

The perils of being a bird

What's the risk?

- o Increased risk of predation (Skutch 1957, Conway and Martin 2000)
- o Temperature variation in eggs (Kovarik, Pavel, and Chutny 2009, Grisham et al. 2016)

Minimizing the risk

Minimiz Nest str Timing

TABLE 5. Model ranking of 29 a estimate nest survival for 101 Li Mixed-Grass Prairie, Sand Shinn Prairie ecoregions, 2010–2014.

Model	AAIC				
VOR*HA ^b	0	0.40	1	6	513.60
VOR*DayVPD	1.31	0.20	0.5	6	514.91
VOR+HA	1.92	0.15	0.38	5	517.54
HA	3.16	0.08	0.20	4	520.79
DayTemp	5.98	0.02	0.05	4	523.62
VOR+DayTemp	6.53	0.01	0.03	5	522.16
VOR+NightTemp	6.88	0.01	0.03	5	522.50
VOR	7.09	0.01	0.02	4	524.72
VOR*NightTemp	7.78	0.01	0.02	6	521.39

Grisham et al. 2016

Boal et al. 2014

Minimizing the risk

- o Which factors affect nest presence?
- o When do females time their breaks?
- o Where do they go on their breaks?

Study Area

- O Western ½ of Kansas
- o 2 of the 4 ecoregions occupied by Lesser Prairie-Chickens
 - o Mixed-Grass Prairie
 - o Shortgrass Prairie

0 2013-2015

Tracking female movement

- O Captured and outfitted females with GPS backpacks
 - Locations from 83 females used
- o Locations taken every 2 hours from 0600-2400
 - Subset from start of incubation to nest completion date (16,282 pts)
- Recorded and measured nest site vegetation
 - o 98 nests
- Measured used and available points on the landscape

Recognizing incubation breaks

- O Used hen presence at nest as response variable
 - o 0/absent = >25m from nest location
 - o 1/present

Sharon Stitele

Which covariates to choose from?

Environmental characteristics

- o Temperature (max. daily)
- o Precipitation

Morphometric characteristics

- o Age
- o Mass

Top model

Nest veg characteristics

- o Grass height
- Visual obstruction
- o Forb cover
- o Grass cover
- o Bare ground cover
- o Shrub cover
- o Litter depth

Descriptive characteristics

- o Site
- o Year
- o Nesting attempt

Model selection output

Model	df	LL	AICc	ΔAICc	ω_{i}
R75 * %grass + precip ² + age*mass + fate	12	-8331.89	16687.8	0.00	0.51
R75 * %grass + site*yr + precip² + age*mass + fate		-8327.61	16689.27	1.47	0.24
R75 * %grass + site * yr + precip ² + age*mass		-8329.27	16690.58	2.77	0.13
R75 * %grass + precip ² + age*mass	11	-8334.68	16691.38	3.58	0.08
R75 * %grass + site * yr + age*mass		-8333.19	16694.4	6.59	0.02
R75 * % grass + age*mass		-8338.41	16694.82	7.02	0.02
Constant	1	-8423.28	16848.55	160.75	0.00

Female presence increases with amount of cover

Females prioritize nest success during precipitation events

Older females have higher proportional nest attendance

Neither timing of breaks nor distance moved during breaks vary

Annual and site variation in selection: bare ground

Annual and site variation in selection: litter depth

Annual and site variation in selection: visual obstruction

Used

Random

Female behavioral trends in the literature

- o Female response to increased grass cover
 - O Thermal refugia (Grisham et al. 2016)
- o Female response to precipitation events
 - O Exposure = nest failure? (Skagen and Adams 2012)
 - o Exposure = nest success? (Fogarty et al. 2017)
- Nest attendance differs by age
 - Fewer future opportunities?(Montgomerie and Weatherhead 1988)
- o Mass inversely related to nest attendance

Incubation breaks may be used as scouting expeditions

- o Individual and site heterogeneity
- o Seek out limiting factors
 - o Less dense vegetation
 - o Increased litter depth
- oBalance of hen/offspring success?

Further questions to be answered...

- o We looked only at factors affecting female nest presence.
 - o How would distance traveled on breaks vary?
 - O Duration of breaks?
 - o Frequency of breaks?
- o Incubating females select for certain areas during breaks.
 - o Do incubation breaks serve as scouting trips for females?

Acknowledgments

- Landowners
- All Technicians

KSU

- Beth Ross
- Haukos Lab

KDWPT

- Kent Fricke
- Jeff Prendergast
- Kraig Schultz

WAWFA

• Jim Pitman

Colorado Parks and Wildlife

- Jonathan Reitz
- Mindy Rice

NRCS

- Christian Hagen
- Adam Elliott
- Dusty Tacha
- David Kraft

